Qabul qilindi: 24.09.2024
Chop etiladi: 27.09.2024
UO'K: 537.86:628.1
IIAME Milliy Tadqiqot Universiteti qoshidagi Fundamental va Amaliy Tadqiqotlar Instituti direktori, Toshkent, O‘zbekiston
Qodirov Akbar
IIAME Milliy Tadqiqot Universiteti qoshidagi Fundamental va Amaliy Tadqiqotlar Instituti,
Toshkent, O‘zbekiston
Shukurov Oybek
O'zbekiston Materialshunoslik Instituti, Toshkent, O‘zbekiston
Tojiyev Shaxzod
O'zbekiston Materialshunoslik Instituti, Toshkent, O‘zbekiston
Annotatsiya. Suv havzalarida sanoat ifloslantiruvchilari, xususan, sintetik bo‘yoqlarning keng tarqalishi samarali va barqaror tozalash usullarini ishlab chiqishni talab qilmoqda. Ushbu maqolada gliding arc plazma texnologiyasidan turli katalizatorlar bilan birgalikda foydalanishni, azo bo‘yoqlar, kislota bo‘yoqlari va boshqa sintetik rang beruvchi moddalarga o‘xshash barqaror organik ifloslantiruvchilarni parchalash uchun qo‘llanilishini har tomonlama o‘rganiladi. Plazma va turli katalizatorlarning kombinatsiyasining sinergik ta’siri tahlil qilinib, ularning parchalanish samaradorligi va reaksiya kinetikasiga ta’siri ko‘rsatib beriladi. So‘nggi tadqiqotlarning asosiy natijalari umumlashtirilib, asosan degradatsiya tezligi, katalizatorlarning samaradorligi va eksperimental sharoitlarga e’tibor qaratilgan. Maqolada plazma va katalizatorlar o‘zaro ta’sirining asosiy mexanizmlarini ham muhokama qilinadi va turli katalizatorlarning ifloslantiruvchi moddalarni parchalanishini kuchaytirishdagi rolini tushuntiradi. Shuningdek, maqolada hozirgi muammolar aniqlanib, gliding arc plazma texnologiyasini keng miqyosda atrof-muhitga oid qo'llanmalar uchun optimallashtirishga qaratilgan kelajakdagi tadqiqot yo'nalishlari taklif etadi. Ushbu ish plazma yordamida katalizni suvni tozalash uchun istiqbolli yondashuv sifatida ko'rsatib, barqaror va samarali reabilitatsiya texnologiyalarini rivojlantirishga hissa qo'shadi.
Razzokov, J., Qodirov, A., Shukurov, O., Tojiyev, Sh. (2024). ENHANCED WATER TREATMENT VIA CATALYST-INTEGRATED GLIDING ARC PLASMA TECHNOLOGY: A REVIEW. Sanoatda raqamli texnologiyalar/Цифровые технологии в промышленности, 2(3).
Dutta, P., et al., Effects of textile dyeing effluent on the environment and its treatment: A review. Eng. Appl. Sci. Lett, 2022. 5(1): p. 1-1.
Rasheed, T., et al., Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environment international, 2019. 122: p. 52-66.
Dobslaw, C. and B. Glocker, Plasma technology and its relevance in waste air and waste gas treatment. Sustainability, 2020. 12(21): p. 8981.
Russo, M., et al., Non-thermal plasma coupled with catalyst for the degradation of water pollutants: A review. Catalysts, 2020. 10(12): p. 1438.
Yusuf, A., et al., Hazardous and emerging contaminants removal from water by plasma-based treatment: A review of recent advances. Chemical Engineering Journal Advances, 2023. 14: p. 100443.
Boulos, M.I., Thermal plasma processing. IEEE transactions on Plasma Science, 1991. 19(6): p. 1078-1089.
Lu, X., et al., Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 2016. 630: p. 1-84.
Fridman, A., et al., Gliding arc gas discharge. Progress in energy and combustion science, 1999. 25(2): p. 211-231.
Tian, D., et al., Progress of organic wastewater degradation by atmospheric pressure gliding arc plasma technology: A review. AIP Advances, 2024. 14(3).
Li, Z., et al., Characterization of a Gliding Arc Igniter from an Equilibrium Stage to a Non–Equilibrium Stage Using a Coupled 3D–0D Approach. Processes, 2023. 11(3): p. 873.
Mumtaz, S., et al., Review on the biomedical and environmental applications of nonthermal plasma. Catalysts, 2023. 13(4): p. 685.
Bradu, C., et al., Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture. Journal of Physics D: Applied Physics, 2020. 53(22): p. 223001.
Saïm, N., et al., New prototype for the treatment of falling film liquid effluents by gliding arc discharge part II: Plasmacatalytic activity of TiO2 thin film deposited by magnetron sputterin. Chemical Engineering and Processing: Process Intensification, 2015. 98: p. 32-40.
Tarkwa, J.-B., et al., Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma. Applied Catalysis B: Environmental, 2019. 246: p. 211-220.
Suzie, V.A., et al., Photocatalytic performance of N–TiO2@ SiO2 composite obtained under gliding arc plasma processing at atmospheric pressure. Results in Engineering, 2022. 15: p. 100516.
Chang-ming, D., et al., Degradation of acid orange 7 solution by air-liquid gliding arc discharge in combination with TiO2 catalyst. Journal of Advanced Oxidation Technologies, 2011. 14(1): p. 17-22.
Djowe, A.T., et al., Discoloration of azoïc Thiazol Yellow dye by gliding arc plasma process in the presence of TiO2 catalyst.
Du, C., et al., Degradation and discoloration of textile dyes using gliding arc plasma combined with fenton catalysis. Plasma Remediation Technology for Environmental Protection, 2017: p. 21-39.
Ghezzar, M., et al., Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2. Applied Catalysis B: Environmental, 2007. 72(3-4): p. 304-313.
Haddou, N., et al., Competitive Contribution of Catalyst and Adsorption Roles of TiO2 on the Degradation of AO7 Dye During Plasma Treatment. Plasma Science and Technology, 2013. 15(9): p. 915.